×

bold磁共振

bold磁共振(血氧水平依赖功能磁共振成像的介绍)

shqlly shqlly 发表于2022-10-25 03:48:24 浏览74 评论0

抢沙发发表评论

本文目录

血氧水平依赖功能磁共振成像的介绍

血氧水平依赖功能磁共振成像 ,是利用脑活动区域局部血液中氧合血红蛋白与去氧血红蛋白比例的变化所引起的局部组织T2的改变,从而在T2加权像上可以反映出脑组织局部活动功能的一种MR成像技术,可用来研究大脑的皮层活动。是 Ogawa 等提出的在 fMRI 中,最重要的技术, 目前它已成为研究脑功能的强有力的技术手段。 相对于传统的正电子发射断层图( positronemission tomography, PET)等脑成像方法, BOLD-fMRI利用人体自身内部血氧浓度变化作为天然造影剂成像, 能提供足够高的空间和时间分辨率。

是否有抑郁症做磁共振能检查出吗

不能。核磁共振是检查器质性问题,对于精神,心理问题查不出。抑郁症的检测一般通过专业国际量表和专业医生,心理咨询师的综合诊断。如果你觉得自己有心理困惑,建议你寻求专业的心理咨询师或者正规的精神心理科医生做进一步了解。再有不明白的也可以问我们。

mr全息成像原理

磁共振成像(MRI)是利用氢原子核在磁场内所产生的信号经重建成像的一种影像技术。

人体内的每一个氢质子可视作一个小磁体,进入强外磁场前,质子排列杂乱无章。放入强外磁场中,则它们仅在平行或反平行于外磁场磁力线两个方向上排列。

平行于外磁力线的质子处于低能级,反平行于外磁场磁力线的处于高能级,前者比后者略多。

在一定频率的射频脉冲的激励下,部分低能级的质子跃入高能级,当射频脉冲停止后又恢复为原来的状态,过程中以射频信号的形式释放出能量,这些被释放出的、并进行了三维空间编码的射频信号被体外线圈接收,经计算机处理后重建成图像。

分类简述:

1、MRI血管成像:

MRI 血管成像的基本原理磁共振血管造影(MRA)是对血管和血流信号特征显示的一种技术。

MRA 作为一种无创伤性的检查,与 CT 及常规放射学检查相比具有特殊的优势,它不需要使用对比剂,流体的流动即是。MRI 成像固有的生理对比剂,常用的 MRA 方法有时间飞越(TOF)法和相位对比(PC)法。但为了 提高图像质量,也可用造影剂显示血管。

2、MRI弥散成像:

MRI 弥散成像(扩散成像)的基本原理 弥散成像(diffu― sion imaging,DI)是利用组织内分子的布朗运动(分子随机热运动)而成像。可以用于脑缺血的检查。由于脑细胞及不同神经束的缺血改变,导致水分子的弥散运动受限,这种弥散受限可以通过弥散加权成像(DWI)显示出来。

3、MRI 灌注成像:

基本原理:

灌注成像(perfusion ima― ging,PI)是通过引入顺磁性对比剂,使成像组织的 T1、T2 值缩短,同时利用超快速成像方法获得成像的时间分辨力。通过静脉团注顺磁性对比剂后周围组织微循环的 T1、T2 值的变化率,计算组织血流灌注功能。

4、MRI功能成像:

脑活动功能成像是利用脑活动区域局部血液中氧合血红蛋白与去氧血红蛋白比例的变化,所引起局部组织 T2的改变,从而在 T2加权像上反映出脑组织局部活动功能的成像技术。

这一技术又称为血氧水平依赖性 MRI 成像(BOLD MRI)。是通过刺激周围神经,激活相应皮层中枢,使中枢区域的血流量增加,进而引起血氧浓度及磁化率的改变而获得的。

(医学教育网)

磁共振成像的发展历程

1978 年底,第一套磁共振系统在位于德国埃尔兰根的西门子研究基地的一个小木屋中诞生。 1979 年底,当系统终于可以工作时,它的第一件作品是辣椒的图像。第一张人脑影像于 1980年 3 月获得,当时的数据采集时间为 8 分钟。  1983 年,西门子在德国汉诺威医学院成功安装了第一台临床磁共振成像设备。借助这台油 冷式、场强 0.2 特斯拉的磁共振设备,HeinzHundeshagen 教授和他的同事为 800 多位患者进行了成像诊断。当时,完成一次检查需要一个半小时。同年,首台超导磁体在美国圣路易斯的Mallinckrodt 学院成功安装。
超导磁体技术的问世,在加快图像生成速度、简化安装的同时,极大地提高了图像质量。然 而,第一台超导磁体重达 8 吨、长达 2.55 米。交付时,随同磁体还有 12 个装满了电子器件的机柜,用于对系统进行控制和将采集的数据重建为图像。今天,场强 1.5 特斯拉的西门子 MagnetomSonata 或者 MagnetomSymphony 磁共振系统只有 3 个计算机柜,占地面积仅 为 30 平米。
1993 年 MagnetomOpen 产品的问世,标志着西门子成为全球第一个能够生产开放式磁共振成像系统的制造商,使患有幽闭症的患者同样可以受益于磁共振技术。1999 年,西门子推出可自动进床的 MagnetomHarmony 和 Symphony 系统,为磁共振技术带来新的突破。从此,对大型人体器官/部位(例如脊椎)进行全面检查时再也无需对病人进行重新定位。
今天,在功能性磁共振成像(fMRI)技术的帮助下,BOLD(血氧依赖水平)效应可用于获取人脑不同区域的组织结构和功能信息,这使神经科医生、心理医生和神经外科医生可深入了解脑部功能甚至代谢过程。另外,由于磁共振图像能够显示人脑的健康组织在多大程度上取代了退化脑组织的功能,因此使中风患者获得新的康复疗法。针对超高场强磁共振应用,西门子推出了两款场强 3 特斯拉的扫描设备——可对病人进行从头到脚全身检查的 MagnetomTrio 系统和专用于人脑检查的 MagnetomAllegra 系统。这进一步增强了磁共振成像技术的优势,尤其是在外科手术成像领域。举例来说,在手术过程中,磁共振成像能够对脑部肿瘤进行精确描绘。这样,在手术过程中医生就能将肿瘤完全切除。在心脏病诊疗应用中,磁共振成像技术开辟了新的途径——利用所谓的自动门控心血管磁共振(CMR)技术,从图像数据中提取周期性信号以取代心电图信号使图像数据与心脏运动实现同步,此时同样无需在病人身体上布设电缆和电极。
磁共振成像技术的持续发展开辟了新的应用领域。例如,人体肠内虚拟内窥镜甚至能够对很小的息肉进行检测。及时除去这些息肉能够大大降低肠癌发生的几率。磁共振成像的另一个应用领域就是特殊肿瘤的诊断,例如:用于早期胸部肿瘤 X 射线透视的磁共振导向活组织检查和用于前列腺病变检查的肿瘤分期观察。

血氧水平依赖功能磁共振成像的基础

血氧水平依赖(blood oxygen level dependent, BOLD)效应最先是由 Ogawa 等于1990 年提出, 他们发现氧合血红蛋白含量减少时, 磁共振信号降低, 并且还发现信号的降低不仅发生在血液里, 而且还发生在血管外, 于是认为这种效应是血液的磁场性质变化引起的。此后很多研究者进行了大量的理论和实验的工作, 总结出 BOLD-fMRI 的成像基础,神经元活动时, 局部脑血流量和耗氧量均增加, 但是两者增加有差异, 即脑血流量的增加多于耗氧量的增加, 这种差异使活动区的静脉血氧浓度较周围组织明显升高,去氧血红蛋白相对减少。去氧血红蛋白是顺磁性的物质, 在血管和其周边产生局部梯度磁场,使质子快速去相位, 因而具有缩短 T2 的作用。 脑区激活时, 由于去氧血红蛋白减少, 缩短 T2 的作用也减少, 同静息状态相比, 局部脑区的 T2 或 T2F 相对延长, 因而在 T2 加权或者 T2F 加权的功能磁共振成像图上表现为信号相对增强。

mri成像的基础是什么

磁共振成像(MRI)是利用氢原子核在磁场内所产生的信号经重建成像的一种影像技术。人体内的每一个氢质子可视作一个小磁体,进入强外磁场前,质子排列杂乱无章。放入强外磁场中,则它们仅在平行或反平行于外磁场磁力线两个方向上排列。平行于外磁力线的质子处于低能级,反平行于外磁场磁力线的处于高能级,前者比后者略多。在一定频率的射频脉冲的激励下,部分低能级的质子跃入高能级,当射频脉冲停止后又恢复为原来的状态,过程中以射频信号的形式释放出能量,这些被释放出的、并进行了三维空间编码的射频信号被体外线圈接收,经计算机处理后重建成图像。
1、MRI 血管成像的基本原理磁共振血管造影(MRA)是对血管和血流信号特征显示的一种技术。MRA 作为一种无创伤性的检查,与 CT 及常规放射学检查相比具有特殊的优势,它不需要使用对比剂,流体的流动即是。MRI 成像固有的生理对比剂,常用的 MRA 方法有时间飞越(TOF)法和相位对比(PC)法。但为了 提高图像质量,也可用造影剂显示血管。
2、MRI 弥散成像(扩散成像)的基本原理 弥散成像(diffu― sion imaging,DI)是利用组织内分子的布朗运动(分子随机热运动)而成像。可以用于脑缺血的检查。由于脑细胞及不同神经束的缺血改变,导致水分子的弥散运动受限,这种弥散受限可以通过弥散加权成像(DWI)显示出来。
3、MRI 灌注成像的基本原理:灌注成像(perfusion ima― ging,PI)是通过引入顺磁性对比剂,使成像组织的 T1、T2 值缩短,同时利用超快速成像方法获得成像的时间分辨力。通过静脉团注顺磁性对比剂后周围组织微循环的 T1、T2 值的变化率,计算组织血流灌注功能。
4、MRI 功能成像的基本原理 脑活动功能成像是利用脑活动区域局部血液中氧合血红蛋白与去氧血红蛋白比例的变化,所引起局部组织 T2的改变,从而在 T2加权像上反映出脑组织局部活动功能的成像技术。这一技术又称为血氧水平依赖性 MRI 成像(BOLD MRI)。其他是通过刺激周围神经,激活相应皮层中枢,使中枢区域的血流量增加,进而引起血氧浓度及磁化率的改变而获得的。

fmri里面的bold怎么理解

功能性磁共振成像(fMRI,functional magnetic resonance imaging)是一种新兴的神经影像学方式,其原理是利用磁振造影来测量神经元活动所引发之血液动力的改变。由于fMRI的非侵入性、没有辐射暴露问题与其较为广泛的应用,从1990年代开始就在脑部功能定位领域占有一席之地。目前主要是运用在研究人及动物的脑或脊髓。

磁共振成像技术的发明人是美国的 ( )和英国 的( )

磁共振成像技术的发明人是美国的保罗·劳特布尔和英国的彼得·曼斯菲尔德。

1985年至今,保罗·劳特布尔担任美国伊利诺伊大学生物医学核磁共振实验室主任。因在核磁共振成像技术领域的突破性成就,和英国科学家彼得·曼斯菲尔德共同获得2003年度诺贝尔生理学或医学奖。

1964年到英国诺丁汉大学物理系担任讲师,彼得·曼斯菲尔德进一步发展了有关在稳定磁场中使用附加的梯度磁场的理论,为核磁共振成像技术从理论到应用奠定了基础。

扩展资料

磁共振成像原理:

原子核自旋,有角动量。由于核带电荷,它们的自旋就产生磁矩。当原子核置于静磁场中,本来是随机取向的双极磁体受磁场力的作用,与磁场作同一取向。

以质子即氢的主要同位素为例,它只能有两种基本状态:取向“平行”和“反向平行”,他们分别对应于低能和高能状态。精确分析证明,自旋并不完全与磁场趋向一致,而是倾斜一个角度θ。这样,双极磁体开始环绕磁场进动。

它们之间的关系满足拉莫尔关系:ω0=γB0,即进动角频率ω0是磁场强度B0与磁旋比γ的积。γ是每种核素的一个基本物理常数。氢的主要同位素,质子,在人体中丰度大,而且它的磁矩便于检测,因此最适合从它得到核磁共振图像。

核磁共振都有几种

核磁共振的机器有好几个品牌,但工作原理基本相同,您说“几种”我理解为在扫描过程中所进行的“扫描序列”。这是根据在不同磁场条件下不同组织产生的信号来划分的,也有一些特殊序列。列举如下:
常规的有:T1、T2、T2FLAIR、弥散像、MRA(磁共振血管造影)、MRV(磁共振静脉成像)。这些可能是一般磁共振室能够常规做的。
特殊的有:DTI(弥散张量成像,用于观察神经纤维的走行)、BOLD成像(观察脑皮层功能区)、MRS(波谱成像,用于判断颅内病变的代谢情况以帮助诊断)。
所谓加强,是指在扫描时静脉注射增强剂(如钆喷酸葡胺等药物),病变和正常组织吸收情况不同,能够更加突出显示病变,还可以根据加强图像的特征提高诊断率,是十分必要的一种手段,现在大医院都使用进口增强剂,过敏的极少(不到0.1%),过敏而出现严重后果的更少,应当可以放心的使用。
关于收费,不同序列有不同序列的价格,一般根据患者的情况要进行不同序列的扫描,收费也不可能每个人都一样。