×

斯托克斯线 to

激光相关文献中常提到斯托克斯效率(stokes efficiency),是指什么什么意义哪本书能学到这个概念?为什么斯托克斯线在右,反斯托克斯线在左

shqlly shqlly 发表于2022-10-12 02:47:53 浏览190 评论0

抢沙发发表评论

本文目录

激光相关文献中常提到斯托克斯效率(stokes efficiency),是指什么什么意义哪本书能学到这个概念

斯托克斯规则是指发光光谱的峰值及中心的波长总是大于激发光光谱的峰值及中心的波长。
1852年G.G.斯托克斯在研究光致发光的光谱时,提出了一个论断:发光的波长总是大于激发光的波长。后来,在大量的实验中,出现了很多例外。于是,把发光谱线分为两类,符合上述关系的叫做斯托克斯线,它的波长和激发光的波长之差,称为斯托克斯位移。反之,称为反斯托克斯线,相应的波长差称为反斯托克斯位移。由于存在很多例外,上述斯托克斯提出的论断就不是规律,而只能称为定则。1879年E.洛梅尔概括了大量实验结果,把斯托克斯定则修改为:发光光谱的峰值及中心的波长总是大于激发光光谱的峰值及重心的波长,称为斯托克斯-洛梅尔定律。
1927年C..瓦维洛夫定律揭示了发光效率随着激发光的波长而变化的规律:在斯托克斯区(即发光波长大于激发光波长的频段)发光的能量效率随着激发光波长的增加而上升,而发光的量子效率不因激发光波长的增大而改变;但是,进入反斯托克斯区以后,发光效率就急剧地下降。从而,进一步揭示了斯托克斯规则的物理内容。
近代关于发光光谱的研究则又深入一步地阐明了产生斯托克斯位移的物理过程。它反映发光中心(见固体发光的电子跃迁所受周围环境的影响,是发光中心与振动中的点阵相互作用的结果。对宽频带发光过程来说,斯托克斯位移是很有益的,因为它可以避免发光被材料再吸收。近年发现了将长波光转换为短波光的材料(上转换材料),它吸收两个以上的光子后,发射出一个能量较大的光子,一般只是在高激发密度下才比较显著。

为什么斯托克斯线在右,反斯托克斯线在左

横坐标是频率,斯托克斯线是波长较长的频率低在左边;反斯托克斯是波长较短的,频率较高在右边。按照统计分布率,分子数再热平衡下按能量的分布为玻耳兹曼分布。布局在较高能级上的分子数要少于较低能级上的,使得频率增加的散射谱线(反斯托克斯)强度比频率减少的散射谱线(斯托克斯先)弱一些。所以反斯托克斯线的高度低于斯托克斯线

斯托克斯现象

你到底要什么,我都给你好了
斯托克斯规则
1852年G.G.斯托克斯在研究光致发光的光谱时,提出了一个论断:发光的波长总是大于激发光的波长。后来,在大量的实验中,出现了很多例外。于是,把发光谱线分为两类,符合上述关系的叫做斯托克斯线,它的波长和激发光的波长之差,称为斯托克斯位移。反之,称为反斯托克斯线,相应的波长差称为反斯托克斯位移。由于存在很多例外,上述斯托克斯提出的论断就不是规律,而只能称为定则。1879年E.洛梅尔概括了大量实验结果,把斯托克斯定则修改为:发光光谱的峰值及重心的波长总是大于激发光光谱的峰值及重心的波长,称为斯托克斯-洛梅尔定律。
1927年C.И.瓦维洛夫定律揭示了发光效率随着激发光的波长而变化的规律:在斯托克斯区(即发光波长大于激发光波长的频段)发光的能量效率随着激发光波长的增加而上升,而发光的量子效率不因激发光波长的增大而改变;但是,进入反斯托克斯区以后,发光效率就急剧地下降。从而,进一步揭示了斯托克斯规则的物理内容。
近代关于发光光谱的研究则又深入一步地阐明了产生斯托克斯位移的物理过程。它反映发光中心(见固体发光的电子跃迁所受周围环境的影响,是发光中心与振动中的点阵相互作用的结果。对宽频带发光过程来说,斯托克斯位移是很有益的,因为它可以避免发光被材料再吸收。近年发现了将长波光转换为短波光的材料(上转换材料),它吸收两个以上的光子后,发射出一个能量较大的光子,一般只是在高激发密度下才比较显著。
斯托克位移
荧光光谱较相应的吸收光谱红移,这被称为斯托克位移(Stoke’s shift)。
荧光光谱发生向短波方向的位移被称为反斯托克位移(Anti-Stoke’s shift)。
相干反斯托克斯-拉曼散射
当入射光是一束足够强的激光时,斯托克斯谱线的强度开始比例于自身而增长,具有明显的受激特性,这就是受激拉曼散射。受激拉曼散射是强激光与物质相互作用所产生的受激声子(光学支声子)对入射光的散射,而自发拉曼散射是热振动声子对入射光的散射,其散射具有随机性特点。受激拉曼散射过程中入射光子()主要被光学支声子()所散射。对斯托克斯线的受激拉曼过程可简述如下:最初一个入射于介质的相干光子与一个热振动声子碰撞,产生了一个斯托克斯光子(),同时增添一个光学支声子,这个光学支声子再与入射光子相碰撞,又增添一个光学支声子,同时产生一个斯托克斯光子。这样重复下去,形成一个雪崩过程。产生光学支声子的过程,关键在于有足够多的入射光子,由于光学支声子所形成的声波是相干的,入射光波也是相干的,所以拉曼散射后所形成的斯托克斯光子也是相干的,这就是一阶斯托克斯散射的受激过程。反斯托克斯线则是入射于介质的相干光子与光学支声子作用,产生一个反斯托克斯光子()。当斯托克斯光强到一定程度时,它自身还会作为泵浦光,发生更高阶的拉曼散射。受激拉曼散射的本质就是入射光和斯托克斯光之间的相互耦合引起这两个光波之间的有效能量转移。受激拉曼散射满足动量守恒和能量守恒:
光子晶体光纤中的反斯托克斯现象
利用自制的光子晶体光纤(PCF),通过逐渐增加抽运脉冲的中心波长λ0,使其主要处于反常色散区,观测到了不同非线性效应作用下的频谱变化尤其是显著的反斯托克斯现象.通过调节耦合光束的入射方向,使光纤稳定输出为第一高阶模.在λ0达到并超过第一高阶模的零色散波长(820 nm)的过程中,抽运波工作在反常色散区,其向反斯托克斯波的能量转化逐渐增强.尤其当λ0超过860 nm之后,反斯托克斯波的强度可达到抽运波剩余强度的5倍,转换效率达到了80%.
这是所有知识容量了,不知有没有你要的。

拉曼光谱

一、拉曼光谱的基本原理

用单色光照射透明样品时,光的绝大部分沿着入射光的方向透过,一部分被吸收,还有一部分被散射。用光谱仪测定散射光的光谱,发现有两种不同的散射现象,一种叫瑞利散射,另一种叫拉曼散射。

1.瑞利散射

散射是光子与物质分子相互碰撞的结果。如果光子与样品分子发生弹性碰撞,即光子与分子之间没有能量交换,则光子的能量保持不变,散射光的频率与入射光的频率相等,只是光子的传播方向发生改变,这种散射是弹性散射。

2.拉曼散射

图13-6-1 拉曼散射和瑞利散射示意图

当光子与分子发生非弹性碰撞时,光子与分子之间发生能量交换,光子就把一部分能量给予分子,或从分子获得一部分能量,光子的能量就会减少或增加。在瑞利散射线的两侧可观察到一系列低于或高于入射光频率的散射线,这就是拉曼散射。图13-6-1给出了拉曼散射和瑞利散射的示意图。

理论与实践证明,拉曼散射散射光频率与入射光频率(v)之差等于分子某一简正振动频率vi,即散射光频率v′=v±vi,若入射光为一单色光(光源为激光),则在散射光谱中,v-vi的拉曼谱线叫做斯托克斯线,v+vi的拉曼谱线叫做反斯托克斯线。斯托克斯线和反斯托克斯线的跃迁几率是相等的,但是,在正常情况下,分子大多处于基态,所以斯托克斯线比反斯托克斯线强得多,拉曼光谱分析多采用斯托克斯线。

拉曼光谱属于分子振动谱,它与红外光谱是互相补充的姊妹谱,所不同的是它能够提供比红外光谱更多的信息。此外,在红外光谱中,某种振动类型是否具有红外活性,取决于振动时偶极矩是否发生变化,而拉曼活性,则取决于振动时极化率是否发生变化。

二、拉曼光谱仪

现代拉曼光谱仪有三大类,第一类是拉曼摄谱仪,具有很高的分辨率;第二类是通用的拉曼光谱仪,具有中等的分辨率;第三类称之为拉曼探针,由拉曼光谱仪与显微镜组装成的显微拉曼探针,如图13-6-2。

图13-6-2 显微拉曼光谱仪系统示意图

它不仅兼有光谱仪和摄谱仪两种功能,而且充分发挥了激光光源高方向性、高强度、高单色性的特点,创造了独一无二的分子探针技术—以分子振动-转动拉曼散射谱为理论依据。可用于鉴别样品的微颗粒、微区域、微结构中分子的种类和相对数量。空间分辨本领达1μm2,探测极限为10-9~10-12g。因此,它不仅可以在薄片上鉴定微米级矿物,也是宝石级的样品检测的好方法。

同时必须指出:激光光源的问世对拉曼光谱分析技术的发展起到了巨大的推动作用。由于整个拉曼散射效应很弱,观察到的拉曼散射光强度仅占入射光强度的十万分之几(瑞利散射强度通常约为入射激发辐射强度的千分之几),因此,为了产生足够强的散射光,激光是最为理想的光源。激光是原子或分子受激辐射产生的,与普通光源相比具有几个突出特点:①具有极好的单色性,例如氦-氖激光器发出的6328 Å 的红色光,它的频率宽度只有9×10-2赫兹;②具有极好的方向性,激光几乎是一束平行光;③激光是非常强的光源,由于激光具有极好的方向性,所以激光的能量集中在一个很窄的范围内,即激光在单位面积内的强度远远高于普通的光源。

三、拉曼光谱在宝玉石学中的应用

由于拉曼光谱分析技术是一种非破坏性的测试手段,因而广泛地应用于宝玉石学领域。又因为拉曼光谱可以进行无损分析、原位分析和深度分析,这又为准确确定包裹体的物相成分提供了重要的实验手段。是鉴定宝玉石矿物,区别天然宝玉石、合成(人造)宝玉石、改性宝玉石和仿制品的有效手段。它可鉴别宝玉石矿物种属和同质多象;区别晶质和非晶质宝玉石材料;进行包裹体研究;检测宝玉石改善处理中的各种染色、涂油、灌注的组分;宝玉石表面优化处理材料的检测等。

1.相似宝石的区别

如钻石和碳化硅十分相似,但钻石只有一个拉曼光谱位于1333cm-1(图13-6-3a);碳化硅的拉曼光谱的主峰位于797cm-1,并且有偏振性,平行晶体的c轴(图13-6-3c)和垂直晶体的c轴(图13-6-3b)的拉曼光谱谱峰的数目和位置都有较大的区别。

图13-6-3 钻石和碳化硅的拉曼光谱

2.原位微区无损分析

聚焦后的激光(若为1 μm)射入宝玉石的表面或内部都可以做微成分和微结构分析。所以非常有利于进行微区分析。若激光聚焦作用在两个物相交界处,则同时产生两个物相的拉曼散射光谱。如图13-6-4(下)为立方氧化锆的拉曼光谱;(中)钻石的拉曼光谱1332cm-1;(上)在立方氧化锆的拉曼光谱图上叠加了钻石1332cm-1的拉曼本征峰。

图13-6-4 立方氧化锆表面镀金刚石膜的拉曼光谱图

图13-6-5 在蓝宝石中锆石包裹体(上)的拉曼光谱

3.原位深度分析

拉曼光谱可以对物质体系进行一定深度范围内的分析,它适用于宝石矿物内部的气、液和固相包裹体的物相分析。如图13-6-5(上)拉曼光谱特征,显示了蓝宝石内部的包裹体是锆石。这是其他测试方法无法替代的。

4.定向分析与偏振分析

拉曼光谱的入射电磁辐射经过偏振后,可以对物质体系进行偏振分析。如图13-6-3碳化硅的偏振拉曼光谱。

拉曼光谱仪主要构造

1. 激光拉曼光谱原理
当一束频率为v0的单色光照射到样品上后,分子可以使入射光发生散射。大部分光只是改变光的传播方向,从而发生散射,而穿过分子的透射光的频率,仍与入射光的频率相同,这时,称这种散射称为瑞利(Rayleigh)散射;还有一种散射光,它约占总散射光强度的 10^-6~10^-10,该散射光不仅传播方向发生了改变,而且该散射光的频率也发生了改变,从而不同于激发光(入射光)的频率,因此称该散射光为拉曼(Raman)散射。在拉曼散射中,散射光频率相对入射光频率减少的,称之为斯托克斯散射,因此相反的情况,频率增加的散射,称为反斯托克斯散射,斯托克斯散射通常要比反斯托克斯散射强得多,拉曼光谱仪通常大多测定的是斯托克斯散射,也统称为拉曼散射。
斯托克斯线(Stokes):基态分子跃迁到虚能级后不会到原处基态,而落到另一较高能级发射光子,发射的新光子能量hv’显然小于入射光子能量hv,△V 就是拉曼散射光谱的频率位移。反斯托克斯线(anti-Stokes):发射光子频率高于原入射光子频率。
拉曼位移(Raman shift):△V 即散射光频率与激发光频之差。拉曼位移与入射光频率无关,它只与散射分子本身的结构有关。拉曼散射是由于分子极化率的改变而产生的(电子云发生变化)。拉曼位移取决于分子振动能级的变化,不同化学键或基团有特征的分子振动,ΔE反映了指定能级的变化,因此与之对应的拉曼位移也是特征的。这是拉曼光谱可以作为分子结构定性分析的依据。
2、拉曼光谱仪分类及结构
拉曼光谱仪一般由光源、外光路、色散系统、及信息处理与显示系统五部分组成。
①激发光源:常用的有Ar离子激光器,Kr离子激光器,He-Ne激光器,Nd-YAG激光器,二极管激光器等。
②样品装置:样品放置方式,包括直接的光学界面,显微镜,光纤维探针和样品。
③滤光器:激光波长的散射光(瑞利光)要比拉曼信号强几个数量级,必须在进入检测器前滤除,另外,为防止样品不被外辐射源照射,需要设置适宜的滤波器或者物理屏障。
④单色器和迈克尔逊干涉仪:有单光栅、双光栅或三光栅,一般使用平面全息光栅干涉器一般与FTIR上使用的相同,为多层镀硅的CaF2或镀Fe2O3的CaF2分束器。也有用石英分束器及扩展范围的KBr分束器。
⑤检测器:传统的采用光电倍增管,目前多采用CCD探测器,FTRaman常用的检测器为Ge或InGaAs检测器。
拉曼光谱仪又细分为激光拉曼光谱仪(laser Raman spectroscopy)和傅立叶变换-拉曼光谱仪(FT-Ramanspectroscopy)。其结构组成及特点如下:
(1)激光拉曼光谱仪(laser Raman spectroscopy)
激光光源:He-Ne激光器,波长632.8nm;Ar激光器,波长514.5 nm,488.0nm;散射强度∝1/λ; 单色器: 光栅,多单色器; 检测器: 光电倍增管, 光子计数器。
激光拉曼光谱因与红外光谱有着相同的波长范围且操作相对简单,因此备受重视。所具有的优点如下:光源频率可调、分辨性好,分辨率高、谱峰常为尖峰,样品用量少(常规用量2~2.5 ug,微量操作时用量为0.06 ug)、只有少量的倍频及组频、样品测试范围广涵盖水溶液样品。激光拉曼光谱仪中的激光易激发出荧光,从而影响测定结果。为了避免弊端,研制了新型的傅里叶变换近红外激光拉曼光谱仪和共焦激光光谱仪。
(2)傅立叶变换-拉曼光谱仪(FT-Ramanspectroscopy)
光源:Nd-YAG钇铝石榴石激光器(1.064μm);检测器:高灵敏度的铟镓砷探头。激光光源、试样室、迈克尔逊干涉仪、特殊滤光器、检测器组成。
优点:避免了荧光干扰;精度高;消除了瑞利谱线;测试速度快。

拉曼光谱中斯托克斯线是怎么形成的

拉曼光谱互动百科词条上有
再详细就要举例列方程了

斯托克斯线是消灭声子还是产生声子

先引用百科里的话“在拉曼散射中,若光子把一部分能量给样品分子,得到的散射光能量减少,在垂直方向测量到的散射光中,可以检测到频率为(V0-△E/h)的线,称为斯托克斯线”
按照这个表述,样品分子吸收了光子能量,会激发出声子(就是产生了振动,或者更笼统的讲就是热。声子是半导体和绝缘体晶体振动传热的量子描述。)
所以回答是产生声子。

少长咸集